miércoles, 12 de octubre de 2011

cuenca hidrologica y esconrentia

Para otros usos de este término, véase Cuenca (desambiguación).

Esquematización de una cuenca.
Se entiende por cuenca hidrográfica, hoya hidrográfica, cuenca de drenaje o cuenca imbrífera el territorio drenado por un único sistema de drenaje natural, es decir, que drena sus aguas al mar a través de un único río, o que vierte sus aguas a un único lago endorreico. Una cuenca hidrográfica es delimitada por la línea de las cumbres, también llamada divisoria de aguas. El uso de los recursos naturales se regula administrativamente separando el territorio por cuencas hidrográficas, y con miras al futuro las cuencas hidrográficas se perfilan como las unidades de división funcionales con más coherencia, permitiendo una verdadera integración social y territorial por medio del agua.
Una cuenca hidrográfica y una cuenca hidrológica se diferencian en que la cuenca hidrográfica se refiere exclusivamente a las aguas superficiales, mientras que la cuenca hidrológica incluye las aguas subterráneas (acuíferos).

Características de la cuenca hidrográfica

Las principales características de una cuenca son:
  • El coeficiente de forma: da indicaciones preliminares de la onda de avenida que es capaz de generar.
  • El coeficiente de ramificación: también da indicaciones preliminares respecto al tipo de onda de avenida.

Cuencas de los principales mares y océanos. Las zonas en gris corresponden a cuencas endorreicas.
En una cuenca se distinguen los siguientes elementos:

Divisoria de aguas

La divisoria de aguas o divortium aquarum es una línea imaginaria que delimita la cuenca hidrográfica. Una divisoria de aguas marca el límite entre una cuenca hidrográficas y las cuencas vecinas. El agua precipitada a cada lado de la divisoria desemboca generalmente en ríos distintos. También llamado Divortium aquarum. Otro término utilizado para esta línea se denomina parteaguas.
El divortium aquarum o línea divisoria de vertientes, es la línea que separa a dos o más cuencas vecinas. Es la divisoria de aguas, utilizada como límite entre dos espacios geográficos o cuencas hidrográficas.

El río principal

El río principal suele ser definido como el curso con mayor caudal de agua (medio o máximo) o bien con mayor longitud o mayor área de drenaje, aunque hay notables excepciones como el río Misisipi o el Miño en España. Tanto el concepto de río principal como el de nacimiento del río son arbitrarios, como también lo es la distinción entre río principal y afluente. Sin embargo, la mayoría de cuencas de drenaje presentan un río principal bien definido desde la desembocadura hasta cerca de la divisoria de aguas. El río principal tiene un curso, que es la distancia entre su naciente y su desembocadura.
En el curso de un río se distinguen tres partes:
  • curso superior, ubicado en lo más elevado del relieve, en donde la erosión de las aguas del río es vertical. Su resultado: la profundización del cauce;
  • curso medio, en donde el río empieza a zigzaguear, ensanchando el valle;
  • curso inferior, situado en las partes más bajas de la cuenca. Allí, el caudal del río pierde fuerza y los materiales sólidos que lleva se sedimentan, formando las llanuras aluviales o valles.
Otros términos importantes a distinguir en un río son:
  • Cauce. Cauce o lecho (Del lat. calix, -icis, tubo de conducción.) m. Lecho de los ríos y arroyos. Conducto descubierto o acequia por donde corren las aguas para riegos u otros usos.
  • Thalweg. Línea que une los puntos de mayor profundidad a lo largo de un curso de agua.
  • Margen derecha. Mirando río abajo, la margen que se encuentra a la derecha.
  • Margen izquierda. Mirando río abajo, la margen que se encuentra a la izquierda.
  • Aguas abajo. Con relación a una sección de un curso de agua, sea principal o afluente, se dice que un punto esta aguas abajo, si se sitúa después de la sección considerada, avanzando en el sentido de la corriente (en castellano se utiliza también el término «ayuso» para referirse a aguas abajo).
  • Aguas arriba. Es el contrario de la definición anterior (en castellano se utiliza también el término «asuso» con el mismo significado).

Los afluentes

Son los ríos secundarios que desaguan en el río principal. Cada afluente tiene su respectiva cuenca, denominada sub-cuenca.

El relieve de la cuenca

El relieve de una cuenca consta de los valles principales y secundarios, con las formas de relieve mayores y menores y la red fluvial que conforma una cuenca. Está formado por las montañas y sus flancos; por las quebradas o torrentes, valles y mesetas.

Las obras humanas

Algunas obras construidas por el ser humano, también denominadas intervenciones antropogénicas, que se observan en la cuenca suelen ser viviendas, ciudades, campos de cultivo, obras para riego y energía y vías de comunicación. El factor humano es siempre el causante de muchos desastres dentro de la cuenca, ya que se sobreexplota la cuenca quitándole recursos o «desnudándola» de vegetación y trayendo inundaciones en las partes bajas. Pero el mayor de los males es la construcción de viviendas, urbanizaciones y poblaciones enteras en zonas inundables, sobre todo, en las llanuras aluviales de las cuencas de muchos ríos.
No obstante, los seres humanos también realizan obras muy positivas en la conservación y mejoramiento de las cuencas hidrográficas para minimizar o eliminar los efectos destructivos de las crecidas e inundaciones. El ejemplo del Plan Sur en el río Turia, a raíz de las inundaciones de Valencia de 1957 es muy claro en este sentido. Lo mismo podríamos decir de los numerosos embalses de propósitos múltiples de numerosos ríos (siendo uno de esos propósitos la regulación del caudal). Basta a veces la construcción de un sólo embalse en un río pequeño para regularizar su caudal y limitar las crecidas y los daños que pueden producirse.

Partes de una cuenca

Una cuenca tiene tres partes:
  • Cuenca alta, que corresponde a la zona donde nace el río, el cual se desplaza por una gran pendiente
  • Cuenca media, la parte de la cuenca en la cual hay un equilibrio entre el material sólido que llega traído por la corriente y el material que sale. Visiblemente no hay erosión.
  • Cuenca baja, la parte de la cuenca en la cual el material extraído de la parte alta se deposita en lo que se llama cono de deyección.

Tipos de cuencas

Existen tres tipos de cuencas:
  • Exorreicas: drenan sus aguas al mar o al océano. Un ejemplo es la cuenca del Plata, en Sudamérica.
  • Endorreicas: desembocan en lagos, lagunas o salares que no tienen comunicación salida fluvial al mar. Por ejemplo, la cuenca del río Desaguadero, en Bolivia.
  • Arreicas: las aguas se evaporan o se filtran en el terreno antes de encauzarse en una red de drenaje. Los arroyos, aguadas y cañadones de la meseta patagónica central pertenecen a este tipo, ya que no desaguan en ningún río u otro cuerpo hidrográfico de importancia. También son frecuentes en áreas del desierto del Sáhara y en muchas otras partes.
ESCORRENTIA Y CUENCA HIDROLOGICA

6.1 DEFINICIÓN
Se denomina escorrentía superficial al agua procedente de la lluvia que circula por la superficie y se concentra en los cauces. La escorrentía superficial es función de las características topográficas, geológicas, climáticas y de vegetación de la cuenca y está íntimamente ligada a la relación entre aguas superficiales y subterráneas de la cuenca.

6.2 Descripción del proceso de escorrentía
Supóngase que en una cuenca se inicia un proceso de lluvia. Las primeras gotas de lluvia son retenidas y almacenadas por las hojas y tallos de la cubierta vegetal, a partir de un cierto límite las gotas comienzan a alcanzar el suelo y después de un breve período de tiempo, casi todas las gotas alcanzan el suelo.
En un segundo proceso, el suelo a través de sus capas de depósitos de restos vegetales y sobre todo en sus depresiones, almacena una cierta cantidad de agua. Es decir, se inicia el proceso de percolación del agua a las capas inferiores (infiltración).
Cuando la capacidad de almacenamiento del suelo, ya descontada la infiltración, está en el límite, se inicia el proceso de circulación superficial del agua. En esta circulación superficial se pueden distinguir dos partes:
- una correspondiente al flujo subsuperficial o mejor llamado hipodérmico, que corresponde a la capa de agua que circula próxima al suelo;
- y otra al flujo superficial propiamente dicho, que circula con mayor velocidad. Es este último el que genera realmente lo que se entiende en ingeniería como escorrentía propiamente dicha.
El balance final se puede expresar como P = I + E + F + A + Pneta , siendo:
P = precipitación total;
I = precipitación interceptada por la cubierta vegetal;
E = evaporación y evapotranspiración;
N = Infiltración;
A = almacenamiento del suelo (encharcamiento);
Pneta = precipitación neta o efectiva;
Por ello el primer problema consistirá en separar de la precipitación total las pérdidas existentes para llegar a la precipitación neta o efectiva.

6.3 FASES DE LA ESCORRENTÍA
Se distinguen dos fases fundamentales en la escorrentía:
1. Fase de ladera. No existe cauce establecido. En esta fase se pueden dar tres tipos de circulación:
- Horton. A medida que circula el agua se infiltra.
- Betson. La escorrentía empieza en un lapso corto de tiempo.
- Anne. En un determinado frente influye la línea de carga.
2. Fase de redes fluviales. Es la fase de circulación, en la que todo el agua que circula por laderas confluye en un cauce principal de la cuenca

6.4 Hidrograma real de una cuenca (ver gráfico pág. 134)
Se denomina hidrograma de una cuenca en un punto al registro de caudales circulantes en función del tiempo. La distribución de lluvia en función de t se denomina hietograma.
Se denomina tiempo de lluvia al período de tiempo en el que la lluvia produce escorrentía.
En el hidrograma se distinguen las siguientes partes:

a) Caudal de base. Corresponde al caudal circulante por el río antes de iniciarse la lluvia y después de que los efectos de la lluvia han desaparecido.

b) Curva de concentración. Es la rama ascendente del hidrograma, función de la intensidad y distribución de la lluvia así como de las características de la cuenca. Las condiciones iniciales de la cuenca (humedad del suelo, vegetación, etc.) influyen decisivamente en la curva de concentración.

c) Punta del hidrograma. Es el punto de caudal máximo.

d) Curva de bajada. Es la primera parte de la rama descendente del hidrograma.

e) Curva de agotamiento. Corresponde a la parte final de la curva de bajada del hidrograma y contiene los caudales subterráneos que corresponden a menores velocidades de circulación del agua. Los caudales hipodérmicos o subsuperficiales son intermedios a los anteriores y sus valores mayores corresponden al entorno del punto de inflexión de la curva de bajada del hidrograma.

f) Tiempo de punta. Es el tiempo transcurrido desde que se inicia la curva de concentración hasta el momento de producirse la punta del hidrograma.

g) Tiempo de Base. Es el tiempo transcurrido entre el inicio de la curva de concentración y el punto de inflexión que identifica el final de la curva de bajada.

h) Tiempo de concentración. Es el tiempo transcurrido desde el final de la lluvia neta hasta el momento en que acaba la curva de bajada, es decir, el final de la escorrentía superficial.

6.5 Análisis de un hidrograma (ver gráfico pág. 136)
En el análisis de un hidrograma se ha considerado la separación entre los caudales procedentes de la escorrentía superficial, la subsuperficial o hipodérmica y los caudales subterráneos.
La escorrentía superficial inicia y finaliza el hidrograma en primer lugar. El caudal subterráneo presenta un hidrograma retrasado y mucho más plano; el hidrograma producido por caudales subsuperficiales e hipodérmicos está en una situación intermedia.

El problema práctico que se plantea es siempre el inverso, es decir dado un hidrograma real separar la parte correspondiente al hidrograma de escorrentía superficial. Es un problema que se aborda por métodos experimentales siempre partiendo del máximo número de datos y con conocimientos prácticos.
En primer lugar es necesario dibujar los hidrogramas existentes y localizar en ellos los puntos A y B de inicio de la curva de concentración y de inflexión en la curva de bajada.
Para ello se dibujarán las tangentes que “rectifican” cada uno de los tramos.
Otro método consiste en fijar el punto B en función de la fórmula N = 0.827·A0,2, donde N es el número de días y A es el área de la cuenca en km2.

6.6 Características de la cuenca
Analizando la escorrentía superficial y estudiando el hidrograma de una cuenca se plantea el análisis de las características físicas de la cuenca que condicionan el hidrograma producido en ellas. Estas características superficiales son la forma, el relieve y distribución hidrográfica.

Área. Es la magnitud más importante que define la cuenca. Delimita el volumen total de agua que la cuenca recibe en cada.
Para determinar el área de la cuenca es necesario delimitar su contorno. Existe un primer contorno de la cuenca definido por la topografía y que delimitaría la cuenca vertiente por escorrentía superficial, es decir, determina los puntos cuya escorrentía vierte a la cuenca considerada. Para ello se debe determinar la línea límite de la cuenca con las adyacentes localizando en primer lugar los puntos más altos del límite de la cuenca, posteriormente se dibuja el contorno de la cuenca, sabiendo que la escorrentía es siempre perpendicular a las curvas de nivel.

Forma de la cuenca. Puede ser mas o menos redondeada. El índice que habitualmente define la forma de la cuenca es el índice de capacidad de Gravelius:
Kc = Perímetro de la cuenca / Perímetro de un círculo de igual área Kc = 0,282·(P / A1/2)
Donde P es el perímetro de la cuenca y A es el área. Si A > Kc, la cuenca tiene forma alargada.

Relieve. El relieve es un factor importante en el comportamiento de la cuenca, ya que cuanto mayores son los desniveles en la cuenca, mayor es la velocidad de circulación y menor el tiempo de concentración, lo que implica un aumento del caudal de punta.
La forma de cuantificar el relieve de una cuenca es por medio de la curva hipsométrica, en la que se representa en ordenadas alturas de la cuenca, y en abscisas la superficie de la cuenca que está por encima de esa cota. La forma de calcularla se realiza por medio de un plano topográfico con curvas de nivel planimetrado entre cada dos curvas de nivel.

* Rectángulo equivalente. Es un rectángulo que tiene la misma superficie, perímetro y curva hipsométrica que la cuenca. Si A y P son el área y el perímetro de la cuenca respectivamente, Kc es el índice de Gravelius, y L y l son los lados del rectángulo equivalente, se tiene que:
L / A1/2 = (Kc / 1,12) + [(Kc / 1,12)2 - 1]1/2 l / A1/2 = (Kc / 1,12) - [(Kc / 1,12)2 - 1]1/2
Para calcular el índice de pendiente (Ip) y la pendiente media (Im) se utilizan las ecuaciones:
Ip =[(HM - Hm) / 1000·L]1/2 Ip =[(HM - Hm) / 100·LR]1/2
Donde HM es la cota más alta del plano, Hm es la cota del punto de la cuenca, L es la longitud del lado mayor del rectángulo equivalente y LR es la longitud del río.

precipitacion de una cuenca


PRECIPITACION
El proceso de la precipitación  no es tan sencillo como parece, pues se necesitan una serie de condiciones previas en la atmósfera, tales como la existencia de vapor de agua en grandes proporciones; este vapor deber ascender y condensarse en la altura formando nubes, y que las condiciones dentro de las nubes permita que las pequeñísimas partículas de agua y hielo aumenten de tamaño y peso, suficiente para caer desde la nube y llegar al suelo. El único de los procesos que conduce a una condensación, es la ascendencia, la cual puede generar la lluvia o cualquier otra precipitación.
Se entiende por precipitación todo aquello que cae del cielo a la superficie de la tierra, ya sea en forma de lluvia, granizo, agua nieve, nieve, etc. Este fenómeno se da por la condensación del vapor de agua con tal rapidez en la atmósfera, alcanzando tal peso que no puede seguir flotando como las nubes, la niebla o la neblina y se precipita de las diversas formas ya mencionadas.
En algunas áreas como las tropicales, donde la temperatura es superior a 0 ºC, la lluvia se forma por un proceso llamado coalescencia. Las nubes están formadas por millones de gotitas de agua, que al chocar entre sí se unen, formando gotas más grandes. Gradualmente van aumentando de tamaño hasta que son demasiado pesadas para ser sostenidas por las corrientes de aire y caen como lluvia.
En áreas más frías, las nubes pueden extenderse hasta donde la temperatura del aire es inferior al punto de congelamiento. Entonces estas nubes son una mezcla de gotas de agua y cristales de hielo abajo y cristales de hielo y gotas superfrías arriba (permanecen como gotas aún cuando la temperatura es inferior a 0ºC). Aquí, además de la coalescencia, se da otro proceso llamado acrecencia. Los cristales de hielo (llamados entonces, "gérmenes de precipitación") atraen a esas gotas superfrías, que se congelan sobre ellos. Al crecer y unirse entre sí, esos cristales forman los copos de nieve. Donde la temperatura cerca de la superficie es superior a 0ºC, la nieve se derrite antes de llegar al suelo y se precipita en forma de lluvia. El agua nieve es una mezcla de copos de nieve y gotas de lluvia.
El granizo se forma en los cumulonimbos (nubes de tormenta), que tienen dentro fuertes corrientes de aire ascendentes y descendentes. La temperatura en la parte superior de esas nubes es muy inferior a 0ºC. Cuando los cristales de hielo (gérmenes de precipitación) corren en su interior, chocan con las gotas superfrías de agua y se recubren de capas de hielo. Más capas de hielo se agregan cuando esas "piedras" son empujadas arriba y abajo dentro de la nube. Finalmente se hacen demasiado pesadas para ser sostenidas por las corrientes de aire dentro de la nube y caen. Si la temperatura en la superficie es muy elevada, puede derretirse antes de llegar al suelo, cayendo entonces en forma de grandes gotas de lluvia. Al tomar una "piedra" de granizo y cortarla por la mitad, puede verse cuántas capas de hielo la recubren (como capas de cebolla).
Medición de la precipitación y sus unidades
Se utiliza un instrumento llamado pluviómetro (Figura 1, izquierda). Consta de tres secciones: una boca receptora, una sección de retención con capacidad para 390 mm de precipitación, y dentro de ella una parte colectora para trasvasar a una probeta el agua recogida para su medición. La precipitación ingresa por la boca y pasa a la sección colectora, luego de ser filtrada (para evitar que entren hojas o cualquier otro objeto). La boca del recipiente deberá estar instalada en posición horizontal, al aire libre y con los recaudos para que se mantenga a nivel y protegida de los remolinos de viento. La probeta debe estar graduada teniendo en cuenta la relación que existe entre el diámetro de la boca del pluviómetro y el diámetro de la probeta. El pluviómetro debe estar instalado a una altura de 1.50 m y los edificios u otros obstáculos deben estar a por lo menos 4 veces su altura de distancia. Si la precipitación cae en forma de nieve, debe ser derretida. También puede medirse la altura de la capa de nieve con una regla (en centímetros).

Figura 1. Instrumentos para medir la lluvia
Otro instrumento es el llamado pluviógrafo (Figura 1, derecha): la precipitación cae a un recipiente que tiene un flotador unido a una pluma inscriptora que actúa sobre una faja de papel reticulado. Esta faja está colocada sobre un cilindro que se mueve a razón de una vuelta por día gracias a un sistema de relojería. El milímetro de precipitación es la caída de 1 litro de precipitación en un área de 1 metro cuadrado. 
Métodos para calcular la precipitación media de una cuenca
 Promedio aritmético
Es el método más simple, en el que se asigna igual peso (1/G) a cada estación. Pueden incluirse estaciones fuera del dominio, cercanas al borde, si se estima que lo que miden es representativo. El método entrega un resultado satisfactorio si se tiene que el área de la cuenca se muestrea con varias estaciones uniformemente repartidas y su topografía es poco variable, de forma de minimizar la variación espacial por esta causa.
Este método puede usarse para promedios sobre períodos más largos, en que sabemos que la variabilidad espacial será menor. Si se conocen las lluvias anuales en cada estación, el método puede refinarse ponderando cada estación por su aporte anual.
 Método de las isoyetas
Este es uno de los métodos más precisos, pero es subjetivo y dependiente del criterio de algún hidrólogo que tenga buen conocimiento de las características de la lluvia en la región estudiada. Permite incorporar los mecanismos físicos que explican la variabilidad de la lluvia dentro de la cuenca. El método consiste en trazar líneas de igual precipitación llamadas isoyetas a partir de los datos puntuales reportados por las estaciones meteorológicas (Figura 2).
Al área entre dos isoyetas sucesivas, se le asigna el valor de precipitación promedio entre tales isoyetas. Conociendo el área encerrada entre pares sucesivos de isoyetas, obtenemos la precipitación regional. El método requiere hacer supuestos en "cimas" y "hoyos".
Al trazar las isoyetas para lluvias mensuales o anuales, podemos incorporar los efectos topográficos sobre la distribución espacial de la precipitación, tomando en cuenta factores tales como la altura y la exposición de la estación. También se recomienda este método para calcular promedios espaciales en el caso de eventos individuales localizados.
Figura 2. Trazado de isoyetas
 Polígonos de Thiessen (1911)
El dominio estudiado se divide en G subregiones o zonas de influencia en torno a cada estación. La precipitación medida (o calculada) en cada pluviómetro se pondera entonces por la fracción del área total de la cuenca comprendida en cada zona de influencia. Las subregiones se determinan de manera tal que todos los puntos incluidos en esa subregión estén más cercanos al pluviómetro correspondiente que a cualquier otra estación. Una vez delimitadas las G zonas de influencia, y calculadas sus áreas (dentro de la cuenca) ai , se obtiene el promedio espacial según:
Thiessen ideó el método para delimitar las subregiones correspondientes a cada pluviómetro: se unen las estaciones adyacentes con segmentos de recta, y luego se construyen los bisectores perpendiculares a cada segmento, extendiéndolos hasta que se intersecten, formando polígonos irregulares (Figura 3). Si hay dudas, se resuelven comparando las distancias a los pluviómetros. Note que pueden usarse estaciones ubicadas fuera de la cuenca, siempre que haya sectores más cercanos a éstas que a cualquier otro instrumento ubicado en su interior.
Una vez calculados, los coeficientes de Thiessen (ai / A) no cambian, por lo que es fácil usar el método para muchos eventos o períodos distintos. Si en algún caso faltaran datos en una estación, es más fácil estimarlos que rehacer todos los polígonos obviando tal pluviómetro. Si se altera la red hidrometeorológica, sí deben recalcularse los coeficientes del método.
Esta metodología es objetiva y entrega resultados satisfactorios si se tiene una red adecuada de pluviómetros. No es recomendable en áreas montañosas, ya que los coeficientes no reflejan de ninguna manera los efectos altitudinales, y tampoco se recomienda su aplicación para derivar promedios regionales en el caso de tormentas locales intensas.
Figura 3. Trazado de los polígonos de Thiessen
 Otros métodos analíticos de ajuste
Mínimos cuadrados. Se ajusta una superficie a los valores medidos (calculados) de manera de minimizar la sumatoria de los errores al cuadrado, es decir, de las diferencias al cuadrado entre datos medidos y estimados (lo mismo que hacemos en una regresión lineal). Matemáticamente, esta superficie es un polinomio en x e y, de cualquier orden menor que G, la cantidad de puntos con datos conocidos. Mientras más términos, será mejor el ajuste en los puntos, pero habrá más irregularidades, incluso con detalles absurdos en zonas sin ninguna información.
Interpolación por polinomios de Lagrange. En este caso, se obtiene una superficie que calza exactamente con los valores conocidos. Sigue siendo un polinomio en x e y, pero con G términos. La superficie puede fluctuar demasiado.
Interpolación spline. Evita oscilaciones al ajustar la superficie de menor curvatura posible que pasa por todos los puntos dados. Computacionalmente, esta metodología puede ser muy intensa.
Interpolación por distancia inversa. En este método, los coeficientes de ponderación son sólo función de las distancias entre el punto de interés y cada una de las G estaciones con datos. Así, para un punto cualquiera de la trama j = r, la ponderación para el valor medido en la estación g = s se calcula como:
con d (r,s) la distancia entre el nodo r y la estación s, y b un exponente (usualmente 1 ó 2). Un problema con este método es el hecho que cuando hay dos estaciones cercanas, no se considera la redundancia en la información.
Interpolación multicuadrática. Como en el método anterior, las ponderaciones dependen de la distancia entre cada nodo y estación. La influencia de cada estación se representa por conos ubicados sobre cada una de las G estaciones, de modo que la precipitación en cualquier punto queda dada por:
donde los valores Cg quedan dados por operaciones matriciales que involucran las distancias entre estaciones y los valores medidos pg, (xg, yg) son las coordenadas de las estaciones, y y (xj, yj) son las coordenadas del punto en que queremos estimar la precipitación.
Krigging o interpolación óptima. Corresponde a una serie de técnicas, muy usadas en hidrología, minería, aguas subterráneas, geología y otras disciplinas que requieren tratar con variabilidad espacial en dos o tres dimensiones. Los valores estimados se derivan como combinaciones lineales ponderadas de los datos disponibles, intentando minimizar el sesgo y la varianza de los errores. Los coeficientes de ponderación se calculan asumiendo homogeneidad espacial de la precipitación (es decir, que no hay tendencias espaciales). Las soluciones dependen de la función de correlación espacial que se use.
Comparación de los distintos métodos
Varios estudios han comparado las distintas metodologías para estimar precipitación regional a partir de valores puntuales. La elección de un método particular depende del objetivo del análisis, el carácter de la región en estudio, el tiempo computacional disponible, etc.
Si se requiere sólo una estimación burda, o bien hay limitaciones de tiempo y/o recursos, puede usarse cualquiera de los métodos de ponderación directa, o bien el método hipsométrico o el de las isoyetas. Sin embargo, debe tenerse en cuenta que el promedio aritmético, Thiessen, y el método de los dos ejes no sirven para zonas con variaciones sistemáticas de la precipitación (generalmente debidas a la topografía), a menos que haya una alta densidad de estaciones, repartidas uniformemente. En este caso, es mejor usar el método hipsométrico o algún otro método de ajuste de una superficie. Los estudios han concluido unánimemente que los métodos de interpolación óptima (krigging) entregan las mejores estimaciones de precipitación regional en una variedad de situaciones. Esto se debe a que son los únicos que se basan en la estructura de correlación espacial de la precipitación, mientras que todos los demás imponen una estructura espacial esencialmente arbitraria.
Es necesario mencionar el uso del radar "doppler" para estimar la distribución espacial de tasas instantáneas de precipitación en las nubes. Las estimaciones son poco precisas, pero sirven para visualizar el alcance de la tormenta y las diferencias relativas entre puntos distintos.
Estudio de caso: Cuenca del Río Mátape
La Cuenca del Río Mátape, ubicada en la Región Hidrológica No. 9 al centro del Estado de Sonora, México, cuenta con 11 estaciones climatológicas de las que se tomaron datos de precipitación total anual (mm) del año de 1993. Determine la precipitación media de la cuenca utilizando los métodos del promedio aritmético, de las isoyetas y los polígonos de Thiessen.

Bibliografía consultadaAparicio Mijares, F.J. 1999. Fundamentos de Hidrología de Superficie. Ed. Limusa. México.303 p.
Chow, V., Maidment, D. y Mays, L. 2000. Hidrología Aplicada. Ed. Nomos, S.A. Colombia. 584 p.
Custodio, E. y Llamas, M. 1976. Hidrología Subterránea. Ed. Omega. España. pp. 299-305.
http://webworld.unesco.org/water/ihp/db/glossary/glu/IN-ES-MT.HTM
http://hidraulica.dic.udec.cl/asignaturas/material/hidrologia/lec2002/precipitacion.doc
http://galeon.hispavista.com/luisjaimes/favorite.htm
http://www.geocities.com/silvia_larocca/Temas/Met16.htm

ciclo hidrologico


Ciclo Hidrológico del Agua

El agua no permanece estacionaria sobre la Tierra sino que se establece una circulación del agua entre los océanos, la atmósfera y la litosfera-biosfera de forma permanente. Es lo que se conoce como ciclo hidrológico.
El ciclo hidrológico
El ciclo hidrológico se podría definir como el proceso que describe la ubicación y el movimiento del agua en nuestro planeta. Es un proceso continuo en el que una partícula de agua evaporada del océano vuelve al océano después de pasar por las etapas de precipitación, escorrentía superficial y/o escorrentía subterránea.
El concepto de ciclo se basa en el permanente movimiento o transferencia de las masas de agua, tanto de un punto del planeta a otro, como entre sus diferentes estados (líquido, gaseoso y sólido). Este flujo de agua se produce por dos causas principales: la energía Solar y la gravedad.

Fases del ciclo hidrológico

Evaporación

El ciclo se inicia sobre todo en las grandes superficies líquidas (lagos, mares y océanos) donde la radiación solar favorece que continuamente se forme vapor de agua. El vapor de agua, menos denso que el aire, asciende a capas más altas de la atmósfera, donde se enfría y se condensa formando nubes.

Precipitación

Cuando por condensación las partículas de agua que forman las nubes alcanzan un tamaño superior a 0,1 mm comienza a formarse gotas, gotas que caen por gravedad dando lugar a las precipitaciones (en forma de lluvia, granizo o nieve).

Retención

Pero no todo el agua que precipita llega a alcanzar la superficie del terreno. Una parte del agua de precipitación vuelve a evaporarse en su caída y otra parte es retenida (agua de intercepción por la vegetación, edificios, carreteras, etc., y luego se evapora.
Del agua que alcanza la superficie del terreno, una parte queda retenida en charcas, lagos y embalses (almacenamiento superficial) volviendo una gran parte de nuevo a la atmósfera en forma de vapor.

Escorrentía superficial

Otra parte circula sobre la superficie y se concentra en pequeños cursos de agua, que luego se reúnen en arroyos y más tarde desembocan en los ríos (escorrentía superficial). Este agua que circula superficialmente irá a parar a lagos o al mar, donde una parte se evaporará y otra se infiltrará en el terreno.

Infiltración

Pero también una parte de la precipitación llega a penetrar la superficie del terreno (infiltración) a través de los poros y fisuras del suelo o las rocas, rellenando de agua el medio poroso.

Evapotranspiración

En casi todas las formaciones geológicas existe una parte superficial cuyos poros no están saturados en agua, que se denomina zona no saturada, y una parte inferior saturada en agua, y denominada zona saturada. Una buena parte del agua infiltrada nunca llega a la zona saturada sino que es interceptada en la zona no saturada. En la zona no saturada una parte de este agua se evapora y vuelve a la atmósfera en forma de vapor, y otra parte, mucho más importante cuantitativamente, se consume en la transpiración de las plantas. Los fenómenos de evaporación y transpiración en la zona no saturada son difíciles de separar, y es por ello por lo que se utiliza el término evapotranspiración para englobar ambos términos.

Escorrentía subterránea

El agua que desciende, por gravedad-percolación y alcanza la zona saturada constituye la recarga de agua subterránea.
El agua subterránea puede volver a la atmósfera por evapotranspiración cuando el nivel saturado queda próximo a la superficie del terreno. Otras veces, se produce la descarga de las aguas subterráneas, la cual pasará a engrosar el caudal de los ríos, rezumando directamente en el cauce o a través de manantiales, o descarga directamente en el mar, u otras grandes superficies de agua, cerrándose así el ciclo hidrológico.
El ciclo hidrológico es un proceso continuo pero irregular en el espacio y en el tiempo. Una gota de lluvia puede recorrer todo el ciclo o una parte de él. Cualquier acción del hombre en una parte del ciclo, alterará el ciclo entero para una determinada región. El hombre actúa introduciendo cambios importantes en el ciclo hidrológico de algunas regiones de manera progresiva al desecar zonas pantanosas, modificar el régimen de los ríos, construir embalses, etc.
El ciclo hidrológico no sólo transfiere vapor de agua desde la superficie de la Tierra a la atmósfera sino que colabora a mantener la superficie de la Tierra más fría y la atmósfera más caliente. Además juega un papel de vital importancia: permite dulcificar las temperaturas y precipitaciones de diferentes zonas del planeta, intercambiando calor y humedad entre puntos en ocasiones muy alejados.
Las tasas de renovación del agua, o tiempo de residencia medio, en cada una de las fases del ciclo hidrológico no son iguales. Por ejemplo, el agua de los océanos se renueva lentamente, una vez cada 3.000 años, en cambio el vapor atmosférico lo hace rápidamente, cada 10 días aproximadamente.